204 research outputs found

    Maximizing genetic gain in constrained breeding schemes

    Get PDF

    Breeding schemes in reindeer husbandry

    Get PDF
    The objective of the paper was to investigate annual genetic gain from selection (G), and the influence of selection on the inbreeding effective population size (Ne), for different possible breeding schemes within a reindeer herding district. The breeding schemes were analysed for different proportions of the population within a herding district included in the selection programme. Two different breeding schemes were analysed: an open nucleus scheme where males mix and mate between owner flocks, and a closed nucleus scheme where the males in non-selected owner flocks are culled to maximise G in the whole population. The theory of expected long-term genetic contributions was used and maternal effects were included in the analyses. Realistic parameter values were used for the population, modelled with 5000 reindeer in the population and a sex ratio of 14 adult females per male. The standard deviation of calf weights was 4.1 kg. Four different situations were explored and the results showed: 1. When the population was randomly culled, Ne equalled 2400. 2. When the whole population was selected on calf weights, Ne equalled 1700 and the total annual genetic gain (direct + maternal) in calf weight was 0.42 kg. 3. For the open nucleus scheme, G increased monotonically from 0 to 0.42 kg as the proportion of the population included in the selection programme increased from 0 to 1.0, and Ne decreased correspondingly from 2400 to 1700. 4. In the closed nucleus scheme the lowest value of Ne was 1300. For a given proportion of the population included in the selection programme, the difference in G between a closed nucleus scheme and an open one was up to 0.13 kg. We conclude that for mass selection based on calf weights in herding districts with 2000 animals or more, there are no risks of inbreeding effects caused by selection

    Genomic selection requires genomic control of inbreeding

    Get PDF
    BACKGROUND: In the past, pedigree relationships were used to control and monitor inbreeding because genomic relationships among selection candidates were not available until recently. The aim of this study was to understand the consequences for genetic variability across the genome when genomic information is used to estimate breeding values and in managing the inbreeding generated in the course of selection on genome-enhanced estimated breeding values. METHODS: These consequences were measured by genetic gain, pedigree- and genome-based rates of inbreeding, and local inbreeding across the genome. Breeding schemes were compared by simulating truncation selection or optimum contribution selection with a restriction on pedigree- or genome-based inbreeding, and with selection using estimated breeding values based on genome- or pedigree-based BLUP. Trait information was recorded on full-sibs of the candidates. RESULTS: When the information used to estimate breeding values and to constrain rates of inbreeding were either both pedigree-based or both genome-based, rates of genomic inbreeding were close to the desired values and the identical-by-descent profiles were reasonably uniform across the genome. However, with a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding were much higher than expected. With pedigree-instead of genome-based estimated breeding values, the impact of the largest QTL on the breeding values was much smaller, resulting in a more uniform genome-wide identical-by-descent profile but genomic rates of inbreeding were still higher than expected based on pedigree relationships, because they measure the inbreeding at a neutral locus not linked to any QTL. Neutral loci did not exist here, where there were 100 QTL on each chromosome. With a pedigree-based inbreeding constraint and genome-based estimated breeding values, genomic rates of inbreeding substantially exceeded the value of its constraint. In contrast, with a genome-based inbreeding constraint and genome-based estimated breeding values, marker frequencies changed, but this change was limited by the inbreeding constraint at the marker position. CONCLUSIONS: To control inbreeding, it is necessary to account for it on the same basis as what is used to estimate breeding values, i.e. pedigree-based inbreeding control with traditional pedigree-based BLUP estimated breeding values and genome-based inbreeding control with genome-based estimated breeding values

    Precision of methods for calculating identity-by-descent matrices using multiple markers

    Get PDF
    A rapid, deterministic method (DET) based on a recursive algorithm and a stochastic method based on Markov Chain Monte Carlo (MCMC) for calculating identity-by-descent (IBD) matrices conditional on multiple markers were compared using stochastic simulation. Precision was measured by the mean squared error (MSE) of the relationship coefficients in predicting the true IBD relationships, relative to MSE obtained from using pedigree only. Comparisons were made when varying marker density, allele numbers, allele frequencies, and the size of full-sib families. The precision of DET was 75–99% relative to MCMC, but was not simply related to the informativeness of individual loci. For situations mimicking microsatellite markers or dense SNP, the precision of DET was ≥ 95% relative to MCMC. Relative precision declined for the SNP, but not microsatellites as marker density decreased. Full-sib family size did not affect the precision. The methods were tested in interval mapping and marker assisted selection, and the performance was very largely determined by the MSE. A multi-locus information index considering the type, number, and position of markers was developed to assess precision. It showed a marked empirical relationship with the observed precision for DET and MCMC and explained the complex relationship between relative precision and the informativeness of individual loci
    corecore